资源类型

期刊论文 427

年份

2024 1

2023 21

2022 53

2021 40

2020 35

2019 39

2018 12

2017 10

2016 16

2015 9

2014 18

2013 28

2012 10

2011 18

2010 13

2009 27

2008 17

2007 16

2006 5

2005 5

展开 ︾

关键词

混凝土 17

三峡工程 7

三峡升船机 4

混凝土坝 3

混凝土浇筑 3

混凝土面板堆石坝 3

三点弯曲梁 2

升船机 2

实时监控 2

延性 2

承载力 2

收缩 2

施工技术 2

玻璃钢 2

碾压混凝土坝 2

组合梁 2

700 m跨径级别 1

ANSYS 1

D区 1

展开 ︾

检索范围:

排序: 展示方式:

Investigation on modeling parameters of concrete beams reinforced with basalt FRP bars

Jordan CARTER, Aikaterini S. GENIKOMSOU

《结构与土木工程前沿(英文)》 2019年 第13卷 第6期   页码 1520-1530 doi: 10.1007/s11709-019-0580-0

摘要: Fiber-reinforced polymer (FRP) bars are widely used as internal reinforcement replacing the conventional steel bars to prevent from corrosion. Among the different types of FRP bars, basalt FRP (BFRP) bars have been used in different structural applications and, herein, three already tested concrete beams reinforced with BFRP bars are analyzed using three-dimensional (3-D) finite element analysis (FEA). The beams were tested in four-point bending. In the FEA the behavior of concrete is simulated using the “Concrete-Damaged Plasticity” model offered in ABAQUS software. The research presented here presents a calibrated model for nonlinear FEA of BFRP concrete beams to predict their response considering both the accuracy and the computational efficiency. The calibration process showed that the concrete model should be regularized using a mesh-dependent characteristic length and material-dependent post-yield fracture and crushing energies to provide accurate mesh-size independent results. FEA results were compared to the test results with regard to failure load and crack patterns. Both test the results and the numerical results were compared to the design predictions of ACI 440.1R-15 and CSA S806-12, where CSA S806-12 seems to overestimate the shear strength for two beams.

关键词: basalt Fiber-reinforced polymer bars     reinforced concrete beams     finite element analysis     damaged plasticity model     design codes    

Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement

Dong XU,Yu ZHAO,Chao LIU

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 325-336 doi: 10.1007/s11709-014-0080-1

摘要: In determining the shear capacity of reinforced concrete beams, current codes do not provide any calculation method to evaluate the influence of web horizontal reinforcement, although they exist as structural reinforcements (or skin reinforcement). The present paper comprises results of 11 reinforced concrete beams in an effort to investigate the influence of web horizontal reinforcement on the shear behavior of reinforced concrete beams. The primary design variables are the shear-span-depth ratio, different reinforcement ratio of stirrups and web horizontal reinforcement. Influence of web horizontal reinforcement on crack patterns and failure mode was studied. It was found that web horizontal reinforcement can increase the shear capacity of the beams and restrain growth of inclined cracks effectively. Test results are very valuable, as very few references of shear tests can be found focusing on the effect of web horizontal reinforcement on the shear capacity of the beams.

关键词: reinforced concrete beam     shear strength     web horizontal reinforcement     experiments    

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

《结构与土木工程前沿(英文)》 2021年 第15卷 第3期   页码 576-594 doi: 10.1007/s11709-021-0728-6

摘要: Reinforced concrete beams consisting of both steel and glass-fiber-reinforced polymer rebars exhibit excellent strength, serviceability, and durability. However, the fatigue shear performance of such beams is unclear. Therefore, beams with hybrid longitudinal bars and hybrid stirrups were designed, and fatigue shear tests were performed. For specimens that failed by fatigue shear, all the glass-fiber-reinforced polymer stirrups and some steel stirrups fractured at the critical diagonal crack. For the specimen that failed by the static test after 8 million fatigue cycles, the static capacity after fatigue did not significantly decrease compared with the calculated value. The initial fatigue level has a greater influence on the crack development and fatigue life than the fatigue level in the later phase. The fatigue strength of the glass-fiber-reinforced polymer stirrups in the specimens was considerably lower than that of the axial tension tests on the glass-fiber-reinforced polymer bar in air and beam-hinge tests on the glass-fiber-reinforced polymer bar, and the failure modes were different. Glass-fiber-reinforced polymer stirrups were subjected to fatigue tension and shear, and failed owing to shear.

关键词: fatigue     shear     hybrid stirrups     hybrid reinforcement     fiber-reinforced polymer    

Strengthening of reinforced concrete beams using fiber-reinforced cementitious matrix systems fabricated

《结构与土木工程前沿(英文)》   页码 1100-1116 doi: 10.1007/s11709-023-0967-9

摘要: The performance of a new fiber-reinforced cementitious matrix (FRCM) system developed using custom-designed mortar and fabrics is investigated in this study. The behavior of this system is evaluated in terms of both the flexural and shear strengthening of reinforced concrete beams. Eight beams are designed to assess the effectiveness of the FRCM system in terms of flexural strengthening, and four specimens are designed to investigate their shear behavior. The parameters investigated for flexural strengthening are the number of layers, span/depth ratio, and the strengthening method. Unlike previous studies, custom fabrics with similar axial stiffness are used in all strengthening methods in this study. In the shear-strengthened specimens, the effects of the span/depth ratio and strengthening system type (fiber-reinforced polymer (FRP) or FRCM) are investigated. The proposed FRCM system exhibits desirable flexural and shear strengthening for enhancing the load capacity, provides sufficient bonding with the substrate, and prevents premature failure modes. Considering the similar axial stiffness of fabrics used in both FRCM and FRP systems and the higher load capacity of specimens strengthened by the former, cement-based mortar performs better than epoxy.

关键词: fiber-reinforced cementitious matrix     flexural strengthening     shear strengthening     carbon fiber-reinforced polymer     shear span    

Consumption of carbon fiber plates in the reinforced concrete beams strengthened with CFPs

BU Liangtao, SHI Chuxian, SONG Li

《结构与土木工程前沿(英文)》 2007年 第1卷 第4期   页码 393-398 doi: 10.1007/s11709-007-0053-8

摘要: Four-point bending flexural tests were conducted to one full-size reinforced concrete (RC) beam and three full-size RC beams strengthened with carbon fiber plates (CFPs). The experimental results showed that the consumption of CFP

关键词: flexural     full-size     Four-point     consumption     experimental    

An experimental study on the flexural behavior of heavily steel reinforced beams with high-strength concrete

Yasser SHARIFI, Ali Akbar MAGHSOUDI

《结构与土木工程前沿(英文)》 2014年 第8卷 第1期   页码 46-56 doi: 10.1007/s11709-014-0237-y

摘要: In recent years, an emerging technology termed high-strength concrete (HSC) has become popular in construction industry. Present study describes an experimental research on the behavior of high-strength concrete beams in ultimate and service state. Six simply supported beams were tested, by applying comprising two symmetric concentrated loads. Tests are reported in this study on the flexural behavior of high-strength reinforced concrete (HSRC) beams made with coarse and fine aggregate together with Microsilica. Test parameter considered includes effect of being compressive reinforcement. Based on the obtained results, the behavior of such members is more deeply reviewed. Also a comparison between theoretical and experimental results is reported here. The beams were made from concrete having compressive strength of 66.81–77.72 N/mm and percentage reinforcement ratio ( / ) in the range of 0.56% – 1.20%. The ultimate moment for the tested beams was found to be in a good agreement with that of the predicted ultimate moment based on ACI 318-11, ACI 363 and CSA-04 provisions. The predicted deflection based classical formulation based on code provisions for serviceability requirements is found to underestimate the maximum deflection of HSC reinforced beams at service load.

关键词: high-strength concrete (HSC) members     flexural behavior     reinforced concrete     experimental results     ultimate moment    

Experimental study on fire protection methods of reinforced concrete beams strengthened with carbon fiberreinforced polymer

HU Kexu, HE Guisheng, LU Fan

《结构与土木工程前沿(英文)》 2007年 第1卷 第4期   页码 399-404 doi: 10.1007/s11709-007-0054-7

摘要: In this paper, two reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP) and attached with thick-painted fire resistant coating were tested for fire resistance following the standard fire testing procedures. The experimental results show that the specimen pasted with the insulated layer of 50 mm in thickness could resist fire for 2.5 h. It is also demonstrated that the steel wire mesh embedded in the insulated layer can effectively prevent it from cracking and eroding under firing.

关键词: polymer     insulated     resistant     CFRP     resistance    

Shear behavior of ultra-high-performance concrete beams prestressed with external carbon fiber-reinforced

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1426-1440 doi: 10.1007/s11709-021-0783-z

摘要: The ultra-high-performance concrete (UHPC) and fiber-reinforced polymer (FRP) are well-accepted high-performance materials in the field of civil engineering. The combination of these advanced materials could contribute to improvement of structural performance and corrosion resistance. Unfortunately, only limited studies are available for shear behavior of UHPC beams reinforced with FRP bars, and few suggestions exist for prediction methods for shear capacity. This paper presents an experimental investigation on the shear behavior of UHPC beams reinforced with glass FRP (GFRP) and prestressed with external carbon FRP (CFRP) tendons. The failure mode of all specimens with various shear span to depth ratios from 1.7 to 4.5 was diagonal tension failure. The shear span to depth ratio had a significant influence on the shear capacity, and the effective prestressing stress affected the crack propagation. The experimental results were then applied to evaluate the equations given in different codes/recommendations for FRP-reinforced concrete structures or UHPC structures. The comparison results indicate that NF P 18-710 and JSCE CES82 could appropriately estimate shear capacity of the slender specimens with a shear span to depth ratio of 4.5. Further, a new shear design equation was proposed to take into account the effect of the shear span to depth ratio and the steel fiber content on shear capacity.

关键词: beam     external prestressing     ultra-high-performance concrete     fiber-reinforced polymers     shear behavior     design equation    

Investigation of the parameters affecting the behavior of RC beams strengthened with FRP

Kadir SENGUN; Guray ARSLAN

《结构与土木工程前沿(英文)》 2022年 第16卷 第6期   页码 729-743 doi: 10.1007/s11709-022-0854-9

摘要: Three-point bending tests were carried out on nineteen Reinforced Concrete (RC) beams strengthened with FRP in the form of completely wrapping. The strip width to spacing ratios, FRP type, shear span to effective depth ratios, the number of FRP layers in shear, and the effect of stirrups spacing were the parameters investigated in the experimental study. The FRP contribution to strength on beams having the same strip width to spacing ratios could be affected by the shear span to effective depth ratios and stirrups spacing. The FRP contributions to strength were less on beams with stirrups in comparison to the tested beams without stirrups. Strengthening RC beams using FRP could change the failure modes of the beams compared to the reference beam. In addition to the experimental study, a number of equations used to predict the FRP contribution to the shear strength of the strengthened RC beams were assessed by using a limited number of beams available in the literature. The effective FRP strain is predicted by using test results, and this prediction is used to calculate the FRP contribution to shear strength in ACI 440.2R (2017) equation. Based on the statistical values of the data, the proposed equation has the lowest coefficient of variation (COV) value than the other equations.

关键词: carbon     glass     strengthening     shear strength     reinforced concrete beam     fiber reinforced polymer    

Ductility improvement of GFRP-RC beams using precast confined concrete block in compression zone

《结构与土木工程前沿(英文)》 doi: 10.1007/s11709-023-0968-8

摘要: Fiber-reinforced polymers (FRPs) have received considerable research attention because of their high strength, corrosion resistance, and low weight. However, owing to the lack of ductility in this material and the quasi-brittle behavior of concrete, FRP-reinforced concrete (FRP-RC) beams, even with flexural failure, do not fail in a ductile manner. Because the limited deformation capacity of FRP-RC beams depends on the ductility of their compression zones, the present study proposes using a precast confined concrete block (PCCB) in the compression zone to improve the ductility of the beams. A control beam and four beams with different PCCBs were cast and tested under four-point bending conditions. The control beam failed due to shear, and the PCCBs exhibited different confinements and perforations. The goal was to find an appropriate PCCB for use in the compression zone of the beams, which not only improved the ductility but also changed the failure mode of the beams from shear to flexural. Among the employed blocks, a ductile PCCB with low equivalent compressive strength increased the ductility ratio of the beam to twice that of the control beam. The beam failed in pure flexure with considerable deformation capacity and without significant stiffness reduction.

关键词: ductility     four-point bending test     glass fiber-reinforced polymer     precast confined concrete block    

Shear strength model of the reinforced concrete beams with embedded through-section strengthening bars

Linh Van Hong BUI; Phuoc Trong NGUYEN

《结构与土木工程前沿(英文)》 2022年 第16卷 第7期   页码 843-857 doi: 10.1007/s11709-022-0834-0

摘要: In this study, finite element (FE) analysis is utilized to investigate the shear capacity of reinforced concrete (RC) beams strengthened with embedded through-section (ETS) bars. Effects of critical variables on the beam shear strength, including the compressive strength of concrete, stiffness ratio between ETS bars and steel stirrups, and use of ETS strengthening system alone, are parametrically investigated. A promising method based on the bond mechanism between ETS strengthening and concrete is then proposed for predicting the shear resistance forces of the strengthened beams. An expression for the maximum bond stress of the ETS bars to concrete is developed. This new expression eliminates the difficulty in the search and selection of appropriate bond parameters from adhesion tests. The results obtained from the FE models and analytical models are validated by comparison with those measured from the experiments. Consequently, the model proposed in this study demonstrates better performance and more accuracy for prediction of the beam shear-carrying capacity than those of existing models. The results obtained from this study can also serve researchers and engineers in selection of the proper shear strength models for design of ETS-strengthened RC beams.

关键词: embedded through-section     strengthening     fiber-reinforced polymer     finite element     shear strength model     bond mechanism    

Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected

Antonio MARÍ,Antoni CLADERA,Jesús BAIRÁN,Eva OLLER,Carlos RIBAS

《结构与土木工程前沿(英文)》 2014年 第8卷 第4期   页码 337-353 doi: 10.1007/s11709-014-0081-0

摘要: A mechanical model recently developed for the shear strength of slender reinforced concrete beams with and without shear reinforcement is presented and extended to elements with uniformly distributed loads, specially focusing on practical design and assessment in this paper. The shear strength is considered to be the sum of the shear transferred by the concrete compression chord, along the crack, due to residual tensile and frictional stresses, by the stirrups and, if they exist, by the longitudinal reinforcement. Based on the principles of structural mechanics simple expressions have been derived separately for each shear transfer action and for their interaction at ultimate limit state. The predictions of the model have been compared to those obtained by using the EC2, MC2010 and ACI 318-08 provisions and they fit very well the available experimental results from the recently published ACI-DAfStb databases of shear tests on slender reinforced concrete beams with and without stirrups. Finally, a detailed application example has been presented, obtaining each contributing component to the shear strength and the assumed shape and position of the critical crack.

关键词: shear strength     mechanical model     reinforced concrete     design     assessment     shear tests    

Determination of shear strength of steel fiber RC beams: application of data-intelligence models

Abeer A. AL-MUSAWI

《结构与土木工程前沿(英文)》 2019年 第13卷 第3期   页码 667-673 doi: 10.1007/s11709-018-0504-4

摘要: Accurate prediction of shear strength of structural engineering components can yield a magnificent information modeling and predesign process. This paper aims to determine the shear strength of steel fiber reinforced concrete beams using the application of data-intelligence models namely hybrid artificial neural network integrated with particle swarm optimization. For the considered data-intelligence models, the input matrix attribute is one of the central element in attaining accurate predictive model. Hence, various input attributes are constructed to model the shear strength “as a targeted variable”. The modeling is initiated using historical published researches steel fiber reinforced concrete beams information. Seven variables are used as input attribute combination including reinforcement ratio ( ), concrete compressive strength ( ), fiber factor ( ), volume percentage of fiber ( ), fiber length to diameter ratio ( ) effective depth ( ), and shear span-to-strength ratio ( ), while the shear strength ( ) is the output of the matrix. The best network structure obtained using the network having ten nodes and one hidden layer. The final results obtained indicated that the hybrid predictive model of ANN-PSO can be used efficiently in the prediction of the shear strength of fiber reinforced concrete beams. In more representable details, the hybrid model attained the values of root mean square error and correlation coefficient 0.567 and 0.82, respectively.

关键词: hybrid intelligence model     shear strength     prediction     steel fiber reinforced concrete    

Novel empirical model for predicting residual flexural capacity of corroded steel reinforced concrete

Zhao-Hui LU, Hong-Jun WANG, Fulin QU, Yan-Gang ZHAO, Peiran LI, Wengui LI

《结构与土木工程前沿(英文)》 2020年 第14卷 第4期   页码 888-906 doi: 10.1007/s11709-020-0637-0

摘要: In this study, a total of 177 flexural experimental tests of corroded reinforced concrete (CRC) beams were collected from the published literature. The database of flexural capacity of CRC beam was established by using unified and standardized experimental data. Through this database, the effects of various parameters on the flexural capacity of CRC beams were discussed, including beam width, the effective height of beam section, ratio of strength between longitudinal reinforcement and concrete, concrete compressive strength, and longitudinal reinforcement corrosion ratio. The results indicate that the corrosion of longitudinal reinforcement has the greatest effect on the residual flexural capacity of CRC beams, while other parameters have much less effect. In addition, six available empirical models for calculating the residual flexural strength of CRC beams were also collected and compared with each other based on the established database. It indicates that though five of six existing empirical models underestimate the flexural capacity of CRC beams, there is one model overestimating the flexural capacity. Finally, a newly developed empirical model is proposed to provide accurate and effective predictions in a large range of corrosion ratio for safety assessment of flexural failure of CRC beams confirmed by the comparisons.

关键词: CRC beams     flexural capacity     steel corrosion     database     empirical models    

Numerical modelling of reinforced concrete flexural members strengthened using textile reinforced mortars

《结构与土木工程前沿(英文)》 2023年 第17卷 第4期   页码 649-668 doi: 10.1007/s11709-023-0919-4

摘要: Externally bonded (EB) and near-surface mounted (NSM) bonding are two widely adopted and researched strengthening methods for reinforced-concrete structures. EB composite substrates are easy to reach and repair using appropriate surface treatments, whereas NSM techniques can be easily applied to the soffit and concrete member sides. The EB bonded fiber-reinforced polymer (FRP) technique has a significant drawback: combustibility, which calls for external protective agents, and textile reinforced mortar (TRM), a class of EB composites that is non-combustible and provides a similar functionality to any EB FRP-strengthened substrate. This study employs a finite element analysis technique to investigate the failing failure of carbon textile reinforced mortar (CTRM)-strengthened reinforced concrete beams. The principal objective of this numerical study was to develop a finite element model and validate a set of experimental data in existing literature. A set of seven beams was modelled and calibrated to obtain concrete damage plasticity (CDP) parameters. The predicted results, which were in the form of load versus deflection, load versus rebar strain, tensile damage, and compressive damage patterns, were in good agreement with the experimental data. Moreover, a parametric study was conducted to verify the applicability of the numerical model and study various influencing factors such as the concrete strength, internal reinforcement, textile roving spacing, and externally-applied load span. The ultimate load and deflection of the predicted finite element results had a coefficient of variation (COV) of 6.02% and 5.7%, respectively. A strain-based numerical comparison with known methods was then conducted to investigate the debonding mechanism. The developed finite element model can be applied and tailored further to explore similar TRM-strengthened beams undergoing debonding, and the preventive measures can be sought to avoid premature debonding.

关键词: fiber reinforced polymer     textile reinforced mortar     finite element analysis     concrete damage plasticity     calibration and validation     parametric study    

标题 作者 时间 类型 操作

Investigation on modeling parameters of concrete beams reinforced with basalt FRP bars

Jordan CARTER, Aikaterini S. GENIKOMSOU

期刊论文

Experimental study on shear behavior of reinforced concrete beams with web horizontal reinforcement

Dong XU,Yu ZHAO,Chao LIU

期刊论文

Fatigue shear performance of concrete beams reinforced with hybrid (glass-fiber-reinforced polymer+ steel

期刊论文

Strengthening of reinforced concrete beams using fiber-reinforced cementitious matrix systems fabricated

期刊论文

Consumption of carbon fiber plates in the reinforced concrete beams strengthened with CFPs

BU Liangtao, SHI Chuxian, SONG Li

期刊论文

An experimental study on the flexural behavior of heavily steel reinforced beams with high-strength concrete

Yasser SHARIFI, Ali Akbar MAGHSOUDI

期刊论文

Experimental study on fire protection methods of reinforced concrete beams strengthened with carbon fiberreinforced polymer

HU Kexu, HE Guisheng, LU Fan

期刊论文

Shear behavior of ultra-high-performance concrete beams prestressed with external carbon fiber-reinforced

期刊论文

Investigation of the parameters affecting the behavior of RC beams strengthened with FRP

Kadir SENGUN; Guray ARSLAN

期刊论文

Ductility improvement of GFRP-RC beams using precast confined concrete block in compression zone

期刊论文

Shear strength model of the reinforced concrete beams with embedded through-section strengthening bars

Linh Van Hong BUI; Phuoc Trong NGUYEN

期刊论文

Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams subjected

Antonio MARÍ,Antoni CLADERA,Jesús BAIRÁN,Eva OLLER,Carlos RIBAS

期刊论文

Determination of shear strength of steel fiber RC beams: application of data-intelligence models

Abeer A. AL-MUSAWI

期刊论文

Novel empirical model for predicting residual flexural capacity of corroded steel reinforced concrete

Zhao-Hui LU, Hong-Jun WANG, Fulin QU, Yan-Gang ZHAO, Peiran LI, Wengui LI

期刊论文

Numerical modelling of reinforced concrete flexural members strengthened using textile reinforced mortars

期刊论文